

INFORMATION ON PARAMETERS USED IN THE APPLIED REFERENCE PRICE METHODOLOGY RELATED TO THE TECHNICAL CHARACTERISTICS OF THE TRANSMISSION SYSTEM

1. TECHNICAL CAPACITY AT ENTRY AND EXIT POINTS AND ASSOCIATED ASSUMPTIONS, ARTICLE 30 (1) (A) (I)

The table below sets out the total technical capacity of groups of points, which contracted capacity was included in the calculation of the reference prices within the Tariff No 14 for gaseous fuels transmission services of the Gas Transmission System Operator GAZ-SYSTEM S.A.

Entry/Exit points	Technical Capacity	Unit
Technical Capacity Entry E (high-methane gas)	42,556,522	kWh/h
Technical Capacity Entry UGS (high-methane gas)	25,077,074	kWh/h
Technical Capacity Entry LNG (high-methane gas)	7,576,800	kWh/h
Technical Capacity Entry Lw (Iow-methane gas)	3,955,904	kWh/h
Technical Capacity Exit E (high-methane gas)	90,366,664	kWh/h
Technical Capacity Exit UGS (high-methane gas)	14,395,079	kWh/h
Technical Capacity Exit Lw (Iow-methane gas)	3,135,976	kWh/h

2. FORECASTED CONTRACTED CAPACITY AT ENTRY AND EXIT POINTS AND ASSOCIATED ASSUMPTIONS, ARTICLE 30 (1) (A) (II)

The below table sets out aggregated forecasted contracted capacities of long-term and short-term capacities taking account of the duration of service as well as interruptible capacities included in calculation of the reference prices under the Tariff No 14 for gaseous fuels transmission services of the Gas Transmission System Operator GAZ-SYSTEM S.A.

Entry/Exit points	Contracted Capacity	Unit
Contracted Capacity Entry E (high-methane gas)	21,688,994	kWh/h
Contracted Capacity Entry UGS (high-methane gas)	24,818,244	kWh/h
Contracted Capacity Entry LNG (high-methane gas)	6,370,890	kWh/h
Contracted Capacity Entry Lw (Iow-methane gas)	1,283,601	kWh/h
Contracted Capacity Exit E (high-methane gas)	55,429,452	kWh/h
Contracted Capacity Exit UGS (high-methane gas)	14,374,170	kWh/h
Contracted Capacity Exit Lw (Iow-methane gas)	2,065,753	kWh/h

3. QUANTITY AND THE DIRECTION OF THE GAS FLOW FOR ENTRY AND EXIT POINTS AND ASSOCIATED ASSUMPTIONS, SUCH AS DEMAND AND SUPPLY SCENARIOS FOR THE GAS FLOW UNDER PEAK CONDITIONS, ARTICLE 30 (1) (A) (III)

Non applicable. GAZ-SYSTEM does neither use the reference price methodology based on the quantity and the direction of the gas flow for entry and exit points nor demand and supply scenarios for the gas flow under peak conditions.

4. STRUCTURAL REPRESENTATION OF THE TRANSMISSION NETWORK WITH APPROPRIATE LEVEL OF DETAIL, ARTICLE 30 (1) (A) (IV)

<u>See the operating coverage of the Gas Transmission Operator GAZ-SYSTEM S.A. (joint stock company) (Transmission System Map)</u>

5. Additional technical information about the transmission network, such as length and the diameter of pipelines and the power of compressor stations, article 30 (1) (a) (v)

Length and diameter of the pipelines being part of GAZ-SYSTEM asset base for high-methane and low-methane gas.

Pipeline diameter DN	Lenght [km]		
	High-methane gas (E)	Low-methane gas (Lw)	
up to DN 200	1,724	362	
DN 250 - 400	3,189	282	
DN 500 - 800	4,968	56	
DN 1000	471	-	
TOTAL	10,352	701	

Quantity and the power of compressor stations, as broken down into high-methane and lowmethane gas.

Gas grade	Quantity of compressor stations	Power of compressor stations MWh/h
High-methane gas (E)	15	138
Low-methane gas (Lw)	-	-